Assessing the impact of subsurface temperature observations from fishing vessels on temperature and heat content estimates in shelf seas: a New Zealand case study using Observing System Simulation Experiments

Author:

Kerry Colette,Roughan Moninya,Azevedo Correia de Souza Joao Marcos

Abstract

We know that extremes in ocean temperature often extend below the surface, and when these extremes occur in shelf seas they can significantly impact ecosystems and fisheries. However, a key knowledge gap exists around the accuracy of model estimates of the ocean’s subsurface structure, particularly in continental shelf regions with complex circulation dynamics. It is well known that subsurface observations are crucial for the correct representation of the ocean’s subsurface structure in reanalyses and forecasts. While Argo floats sample the deep waters, subsurface observations of shelf seas are typically very sparse in time and space. A recent initiative to instrument fishing vessels and their equipment with temperature sensors has resulted in a step-change in the availability of in situ data in New Zealand’s shelf seas. In this study we use Observing System Simulation Experiments to quantify the impact of the recently implemented novel observing platform on the representation of temperature and ocean heat content around New Zealand. Using a Regional Ocean Modelling System configuration of the region with 4-Dimensional Variational Data Assimilation, we perform a series of data assimilating experiments to demonstrate the influence of subsurface temperature observations at two different densities and of different data assimilation configurations. The experiment period covers the 3 months during the onset of the 2017-2018 Tasman Sea Marine Heatwave. We show that assimilation of subsurface temperature observations in concert with surface observations results in improvements of 44% and 38% for bottom temperature and heat content in shelf regions (water depths< 400m), compared to improvements of 20% and 28% for surface-only observations. The improvement in ocean heat content estimates is sensitive to the choices of prior observation and background error covariances, highlighting the importance of the careful development of the assimilation system to optimize the way in which the observations inform the numerical model estimates.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3