Temperature affects the sorption of trace metals by macro- and microplastics within marine intertidal sediments: insights from a long-term laboratory-based study

Author:

Kazmiruk Tamara N.,Alava Juan José,Palsson Eirikur,Bendell Leah I.

Abstract

Macro- and microplastics and trace metals are significant pollutants in the marine environment and have been reported in all ecosystems around the world. The process of sorption/desorption of trace metals by macro- and microplastics is influenced by various factors, including the morphological characteristics of macro- and microplastics, their adsorption capacity, and environmental conditions. This research provides and discusses laboratory experimental findings on the sorption of trace metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within two contrasting marine intertidal sedimentary environments with high and low organic matter content under conditions of constant temperatures (T=- 4.0°C, T=+ 4.0°C, and T=+18.0°C). Our aim is to determine the effect of temperature on trace metal sorption onto macro- and microplastics. Temperature alters the metals’ sorption by plastic by altering the rate of reaching equilibrium and equilibrium concentration, whereas constant temperature had only a minor influence on the partitioning of trace metals. Sediment organic matter influences sorption dynamics at all three temperatures T=- 4.0°C, T=+ 4.0°C, and T=+18.0°C. This study enhances our understanding of how temperature can effect trace metals-plastic particle interactions in the marine intertidal sedimentary environment providing insight as to conditions that will create the greatest threat to higher trophic levels by providing an additional vector of Cd, Cu, Pb, and Zn exposure into benthic food webs.

Publisher

Frontiers Media SA

Reference117 articles.

1. A bioseparation process for removing Pb (II) Ions from wastewater by using C. Vulgaris;Aksu;J. Chem. Technol. Biotechnol,1991

2. A call to include plastics in the global environment in the class of persistent, bioaccumulative, and toxic (PBT) pollutants;Alava;Environ. Sci. Technology,2023

3. Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments;Alimi;Water Res,2020

4. Microplastics in the marine environment;Andrady;Mar. pollut. Bull,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3