Physiological condition of the warty venus (Venus verrucosa L. 1758) larvae modulates response to pile driving and drilling underwater sounds

Author:

Gigot Mathilde,Tremblay Réjean,Bonnel Julien,Chauvaud Laurent,Olivier Frédéric

Abstract

Noise is now recognized as a new form of pollution in marine coastal habitats. The development of marine renewable energies has introduced new sonorous perturbations, as the wind farm installation requires pile driving and drilling operations producing low frequency sounds at high sound pressure levels. Exponential expansion of offshore wind farms is occurring worldwide, making impact studies, particularly on benthic species highly abundant and diverse in the coastal area used for wind farming, a necessity. As larval recruitment is the basis for establishing a population, we conducted an experimental study to assess the interactive effects of pile driving or drilling sounds and larval rearing temperature on the endobenthic bivalve Venus verrucosa. In ectothermic animals, temperature modifies the organism’s physiology, resulting in performance variability. We hypothesize that temperature modulation could change larval responses to noise and explore the potential interacting effects of temperature and noise. Using two distinct rearing temperatures, physiologically different batches of larvae were produced with contrasting fatty acid content and composition in the neutral and polar lipid fractions. Without defining any absolute audition threshold for the larvae, we demonstrate that the effects of temperature and noise were ontogenic-dependent and modulated larval performance at the peri-metamorphic stage, acting on the metamorphosis dynamic. At the pediveligers stage, a strong interaction between both factors indicated that the response to noise was highly related to the physiological condition of the larvae. Finally, we suggest that underwater noise reduces the compensatory mechanisms established to balance the temperature increase.

Funder

Centre National de la Recherche Scientifique

Fundación Iberdrola España

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3