Energy-efficient clustering protocol for underwater wireless sensor networks using optimized glowworm swarm optimization

Author:

Bharany Salil,Sharma Sandeep,Alsharabi Naif,Tag Eldin Elsayed,Ghamry Nivin A.

Abstract

In the past few decades, cutting-edge information and communication technology has been used in several ways to keep an eye on the marine environment. Underwater wireless sensor networks (UWSNs) can measure the amount of water and soil conditions, such as soil salinity, moisture, and movements, to predict landslides. UWSNs are made up of many wireless underwater sensor nodes (WSNs) that are spread out across the thalassic environment. These networks have several uses, including data collection, navigation, resource analysis, surveillance, disaster prediction, etc. Nowadays, energy efficiency becomes a complex issue to handle in the design of the UWSN due to the limited battery capacity and the challenges associated with changing or charging the integrated batteries. According to previous research, clustering and routing have already been effective methods of improving energy efficiency in the UWSN, as unreplaceable batteries and long-distance communication delays are particularly vulnerable. As a result, one of the UWSN’s critical issues is determining how to extend the network’s lifespan while balancing its energy consumption and shortening transmission distances. In UWSN clustering, the most important considerations are acquiring a suitable count of clusters, constituting the clusters, and picking the most satisfactory cluster head (CH) for each cluster. Based on several factors, such as residuary energy, total energy consumption, and other considerations, our proposed approach picks CHs and arranges them into clusters. Also, the proposed SS-GSO method constructs a fitness function by including various sources of information, like total energy, residual energy, and luciferin value. Several simulation runs were executed to test how much better the SS-GSO approach worked. The comparison results showed that while evaluating clustering time, our proposed SS-GSO technique performs 22.91%, 50.03%, 42.42%, 58.06% better, in case of Total energy consumption 27.02%,14%,33.76%,41.97% more energy efficient, in Cluster lifetime 9.2%,19.88%,35.91%,40.54% less and in Packet delivery rate 8.29%,14.05%,17.67%,23.97% better as compared with other heuristic techniques, such as ACO, GWO, MFO and LEACH.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3