Differences between potassium and sodium incorporation in foraminiferal shell carbonate

Author:

Pacho Laura,De Nooijer Lennart Jan,Boer Wim,Reichart Gert-Jan

Abstract

The isotopic and elemental composition of the fossil shells of foraminifera are often used for reconstructing past environments and climates. These so-called proxy relations are based on the effect of environmental conditions (e.g. seawater temperature, pH) on the isotopic ratio (e.g. δ11B or δ18O) or partitioning of elements (commonly expressed as El/Ca or DEl) during calcification. Whereas many studies focused on proxy-calibrations of divalent cations, incorporation of monovalent cations are less well constrained. Here we calibrate shell potassium content (K/Cacc) as a function of 1) seawater K+ concentration, 2) the ratio of potassium and calcium in seawater (K/Casw) and 3) temperature. Moreover, we analyze Na+ incorporation into the calcite as a function of seawater K+ and Ca2+ concentrations. First, we cultured specimens of the larger benthic foraminifer Amphistegina lessonii at four different seawater [Ca2+] and constant [K+], resulting in a range of K/Casw. Secondly, we cultured specimens of the same species at four different [Ca2+]sw and [K+]sw while keeping the ratio between these two ions constant. Finally, we tested the effect of temperature (from 18 to 28°C) on K-incorporation in this species. Measured K/Cacc values are not notably affected by [Ca2+]sw, while seawater [K+] positively influences potassium incorporation, resulting in a positive correlation between seawater K/Ca values and K/Cacc. Although the [Na+] in the culture media was constant throughout both experiments, incorporated Na responded positively to decreasing [Ca2+]sw, resulting in a positive correlation between sea water Na/Ca and Na/Cacc. The difference in the controls on K- and Na-incorporation suggests that the (biological) control on these ions differs. Part of the observed variability in element partitioning may be explained by differences in chemical speciation and crystallographic coordination in the calcite lattice.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3