Dynamic Alterations of the Distal Intestinal Microbiota, Transcriptome, and Metabolome of Hybrid Grouper by β -Conglycinin With Reconciliations by Sodium Butyrate in Feed

Author:

Yin Bin,Liu Hongyu,Tan Beiping,Dong Xiaohui,Chi Shuyan,Yang Qihui,Zhang Shuang

Abstract

Different doses of β-conglycinin produce different regulations on the intestinal health of aquatic animals, affecting the absorption of nutrients, indirectly changing water quality. Sodium butyrate (NaB) can effectively alleviate the negative effects caused by high-dose β-conglycinin. We investigated the positive response to low-dose (1.5%, bL) and negative response to high-dose (6.0%, bH) β-conglycinin and supplementation with NaB (6.0% β-conglycinin + 0.13% NaB, bHNaB) in terms of water pollutants, microbiota, transcriptome, and metabolome in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). The ammonia nitrogen, nitrite, total nitrogen, and total phosphorus contents were significantly higher in the water from bH than from FMb, bL, and bHNaB. Supplementing with NaB significantly reduced the ammonia nitrogen, nitrite, total nitrogen, and total phosphorus contents. Low-dose β-conglycinin increased the relative abundance of Pelagibacterium, Pediococcus, Staphylococcus, and Lactobacillus and promoted the “ribosome,” “peroxisome proliferator-activated receptor (PPAR) signaling” and “histidine metabolism.” High-dose β-conglycinin increased the relative abundance of pathogenic bacteria Ralstonia and Photobacterium and inhibited the “cell cycle” “PPAR signaling” and “starch and proline metabolism.” NaB supplementation at high-dose β-conglycinin reduced the Ralstonia and Photobacterium abundance and promoted the “cell cycle,” “linoleic acid metabolism,” and “ABC transporters.” Overall, these results reveal differences in the effects of high- and low-dose β-conglycinin, as well as NaB supplementation, on the utilization of proteins, carbohydrates, and lipids and on substance transport and signaling among distal intestinal cells of hybrid grouper. A total of 15 differential metabolite biomarkers were identified: FMb vs. bL contained 10-methylimidazole acetic acid, N-acetyl histamine, urocanic acid, creatinine, glutathione, taurine, nervonic acid, stearic acid, docosanoic acid, and D-serine; FMb vs. bH contained 4-L-fucose, sucrose, α,α-trehalose, and quercetin; and bH vs. bHNaB contained 4-N-acetyl histamine, urocanic acid, creatinine, and S-adenosylhomocysteine, respectively. Our study provides new insights into the regulation of intestinal health by β-conglycinin in aquatic animals and the protective mechanism of NaB.

Funder

National Key Research and Development Program of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

National Natural Science Foundation of China-Guangdong Joint Fund

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3