Impact and Molecular Mechanism of Microplastics on Zebrafish in the Presence and Absence of Copper Nanoparticles

Author:

Gao Ning,Huang Zhihui,Xing Jianing,Zhang Siyi,Hou Jing

Abstract

The adverse effects of microplastics (MPs) in aquatic environments have attracted increasing attention and posed health risks along with nanomaterials. Therefore, the toxic effects of polystyrene microplastics (PS-MPs) with different particle sizes (0.07, 0.7 and 7 μm) on zebrafish in the presence and absence of copper nanoparticles (Cu-NPs) were evaluated. The acute toxicity of MPs on zebrafish was 7 μm > 0.07 μm > 0.7 μm. Both 0.07 and 7 μm MPs acted on chromosomes and significantly affected cell cycle process by affecting palmitoyl hydrolase activity; while 0.7 μm MPs acted on extracellular space and significantly affected the activity of endopeptidase inhibitor to affect the cholesterol transport. And 0.07 and 7 μm MPs dominantly affected “cell cycle” pathway by inhibiting DNA replication, delaying the progression of S phase and G2/M phase, and affecting the accurate arrangement and separation of chromosomes; while the 0.7 μm MPs activated numerous platelets to aggregate and adhere in damaged parts, enhanced the coagulation function of platelets, and promoted the formation of fibrin clots, thus abnormally activating the “hemostasis” pathway. The presence of Cu-NPs significantly changed the toxicity-related pathways induced by 7 μm MPs from “cell cycle” into “hemostasis,” but not for the smaller-sized MPs (0.07 and 0.7 μm). The combined exposure of Cu-NPs and 7 μm MPs acted on the extracellular region and significantly affected cholesterol transport by affecting the activity of cholesterol transporters. This study provides theoretical insights for the health risks of MPs to aquatic species and even humans in the actual ecosystem.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3