Temperature sensitivity of oxygen demand varies as a function of organic matter source

Author:

Szewczyk Curtis J.,Smith Erik M.,Benitez-Nelson Claudia R.

Abstract

Dissolved oxygen (DO) impairment within coastal waters is widespread and rising temperatures may exacerbate low DO levels by enhancing organic matter (OM) degradation. Here, the temperature sensitivity of OM degradation was investigated as DO decay rates determined during standard five-day biochemical oxygen demand (BOD) measurements conducted under different incubation temperatures. Sampling was conducted in the Waccamaw River watershed, South Carolina, a blackwater river with extensive forested wetland that also receives drainage from stormwater detention ponds associated with coastal development, thus providing different sources of contrasting OM composition. Temperature sensitivities were measured as Q10 temperature coefficients, which define how DO decay rates change with 10 degrees of warming. The average Q10 value for the wetland sites (2.14 ± 0.41) was significantly greater (p < 0.05) than those measured in either the River (1.49 ± 0.36) or stormwater ponds (1.41 ± 0.21). Furthermore, using Intergovernmental Panel on Climate Change intermediate-to-very high temperature estimates for 2100 of +2.7 – 4.4°C, average predicted increases in DO decay rates for wetlands (~22-39%) are more than double the River (~11-18%) and stormwater pond rates (~9-16%). Our findings for inland, coastal waters agree with previous results for soils, suggesting that temperature sensitivities are variable across sites and increase with more complex, lower quality OM. Future modeling scenarios of DO utilization must therefore consider the influence of OM heterogeneity and the temperature sensitivity response of OM degradation across sources and region to better predict how climate change may impact oxygen impairment in aquatic ecosystems.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference79 articles.

1. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers;Abdel-Tawwab;Fish Physiol. Biochem.,2019

2. Temperature coefficient for modeling denitrification in surface water sediments using the mass transfer coefficient;Appelboom;Am. Soc. Agric. Boiological Engineers Vol.,2010

3. Method 445.0: in vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence;Arar,1997

4. Quantifying the degradation of organic matter in marine sediments: A review and synthesis;Arndt;Earth-Science Rev.,2013

5. A semiautomated method for the determination of inorganic, organic and total phosphate in sediment;Aspila;Analyst,1976

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3