Modelling the bottom-up effects of climate change on primary production in the Gulf of St. Lawrence and eastern Scotian Shelf

Author:

Mei Zhi-Ping,Lavoie Diane,Lambert Nicolas,Starr Michel,Chassé Joël,Perrie William,Long Zhenxia

Abstract

The Gulf of St. Lawrence (GSL), along with the St. Lawrence Estuary, is the largest estuarine system in North America. It is a biologically productive sea and an important fishing ground in Canada. The objectives of this study are to determine how climate changes will affect primary production in the GSL and on the eastern Scotian Shelf, and to determine the drivers of the changes. We use a regional ocean model forced with downscaled output of the Max-Planck Institute Earth System Model to study the changes in net primary production under the climate change scenario of Representative Concentration Pathway 8.5 (RCP8.5). Results reveal a projected 13.4% decrease in annual primary production across the GSL system over the next 70 years. This decline primarily stems from reduced nutrient concentrations in the upper layer, despite the increase in nutrients supplied by rivers. Enhanced freshwater influx and ocean surface warming contribute to heightened stratification, that in turn reduce the vertical nutrient fluxes from deeper layers. This mechanism affects the upwelling of nutrient-rich water at the head of the Laurentian Channel in the Lower St. Lawrence Estuary, leading to a 22% reduction in the vertical nitrate flux in the future. Additionally, nutrient concentrations in the water masses entering the GSL at the Strait of Belle Isle and at Cabot Strait are also reduced. Due to declining sea-ice concentration, the phytoplankton bloom is expected to occur between 9 and 23 days earlier under a warmer climate, and last for up to 24 days longer, depending on the GSL subregions, compared to the historical period (2001-2020). Biological productivity at higher trophic levels, and thus fisheries productivity, could be negatively impacted under the RCP8.5 climate change scenario.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3