Improved Accuracy for Automated Counting of a Fish in Baited Underwater Videos for Stock Assessment

Author:

Connolly Rod M.,Fairclough David V.,Jinks Eric L.,Ditria Ellen M.,Jackson Gary,Lopez-Marcano Sebastian,Olds Andrew D.,Jinks Kristin I.

Abstract

The ongoing need to sustainably manage fishery resources can benefit from fishery-independent monitoring of fish stocks. Camera systems, particularly baited remote underwater video system (BRUVS), are a widely used and repeatable method for monitoring relative abundance, required for building stock assessment models. The potential for BRUVS-based monitoring is restricted, however, by the substantial costs of manual data extraction from videos. Computer vision, in particular deep learning (DL) models, are increasingly being used to automatically detect and count fish at low abundances in videos. One of the advantages of BRUVS is that bait attractants help to reliably detect species in relatively short deployments (e.g., 1 h). The high abundances of fish attracted to BRUVS, however, make computer vision more difficult, because fish often obscure other fish. We build upon existing DL methods for identifying and counting a target fisheries species across a wide range of fish abundances. Using BRUVS imagery targeting a recovering fishery species, Australasian snapper (Chrysophrys auratus), we tested combinations of three further mathematical steps likely to generate accurate, efficient automation: (1) varying confidence thresholds (CTs), (2) on/off use of sequential non-maximum suppression (Seq-NMS), and (3) statistical correction equations. Output from the DL model was more accurate at low abundances of snapper than at higher abundances (>15 fish per frame) where the model over-predicted counts by as much as 50%. The procedure providing the most accurate counts across all fish abundances, with counts either correct or within 1–2 of manual counts (R2 = 88%), used Seq-NMS, a 45% CT, and a cubic polynomial corrective equation. The optimised modelling provides an automated procedure offering an effective and efficient method for accurately identifying and counting snapper in the BRUV footage on which it was tested. Additional evaluation will be required to test and refine the procedure so that automated counts of snapper are accurate in the survey region over time, and to determine the applicability to other regions within the distributional range of this species. For monitoring stocks of fishery species more generally, the specific equations will differ but the procedure demonstrated here could help to increase the usefulness of BRUVS.

Funder

Griffith University

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3