Dissolved rare earth element and neodymium isotope distributions in the South China Sea: Water mass source versus particle dissolution

Author:

Wu Qiong,Liu Zhifei,Colin Christophe,Douville Eric,Zhao Yulong,Wu Jiawang,Dapoigny Arnaud,Bordier Louise,Ma Pengfei,Huang Yi

Abstract

Dissolved rare earth elements (REEs) and neodymium isotopes (ϵNd) have been jointly used to evaluate water mass mixing and lithogenic inputs in the ocean. As the largest marginal sea of the West Pacific, the South China Sea (SCS) is an ideal region for reconstructing past hydrological changes. However, its REE and ϵNd distributions and underlying controlling mechanisms remain poorly understood. On the basis of four seawater profiles spread across the SCS, this study presents dissolved REE concentrations and ϵNd data under summer condition to better understand the processes that potentially influence changes in these parameters and their marine cycling. The results show high concentrations of REEs and large variations in ϵNd (−6.7 to −2.8) in surface water, likely caused by the dissolution of riverine and marine particles. Comparison with published data from samples taken during the winter of different years in this and previous studies suggests a possible seasonal variability of middle REE enrichment. The SCS deep water shows a narrow ϵNd range from −4.3 to −3.4, confirming the dominant presence of the North Pacific Deep Water in the deep SCS. The intermediate water in the central SCS is characterized by a more negative ϵNd signal (–4.2 to –3.4) than that found in its counterpart in the West Pacific (–3.5 to –2.8), indicating alterations by deep water through three-dimensional overturning circulation from the northern to southern SCS below ~500 m. The contributions of external sources could be quantitatively estimated for the SCS in terms of Nd. The dissolution of particles from the SCS surrounding rivers (0.26–1.3 tons/yr in summer; 5.6–29 tons/yr in winter) and continental margins (2–12 tons/yr in summer; 23–44 tons/yr in winter) may play an important role in providing additional Nd to the SCS surface water.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3