Exploring the diversity and structural response of sediment-associated microbiota communities to environmental pollution at the siangshan wetland in Taiwan using environmental DNA metagenomic approach

Author:

Salah-Tantawy Ahmed,Chang Ching-Sung Gavin,Liu Min-Yun,Young Shuh-Sen

Abstract

One of the most crucial struggles for the aquatic ecosystem and modern society is environmental pollution. New approaches, such as the environmental DNA Metagenomic approach, have become a powerful tool to investigate the abundance and diversity of sediment-associated microbiota communities. Nevertheless, information on the response of microbial populations to heavy metals (HMs) in the coastal sediments of Taiwan is scarce. 44 sediment samples were collected from the Siangshan wetland in Taiwan (Taiwan Strait) at two different depths (surface and sub-surface) to measure various environmental variables viz., heavy metals, total organic matters, and sediment composition. Moreover, the abundance and structure of sediment-associated microbiota were examined using high-throughput 16S rRNA gene (V3-V4) next-generation sequencing, to explore the response of the microbiota community to environmental variables. According to the computed pollution indices viz., sediment quality guidelines (SQGs), enrichment factor (EF), geo-accumulation index (Igeo), pollution index (PI), and pollution load index (PLI), the studied sites were classified as unpolluted, moderately polluted, and extremely polluted. Our results revealed that the majority of high-quality reads were assigned to bacteria (~ 95.05%), Archaea (~ 4.83%), and 0.13% were unclassified. Study sites were dominated largely by Proteobacteria with a total of 38.02% across all sediment samples, followed by Bacteroidota (7.18%), Desulfobacterota (6.97%), Actinobacterota (6.68%), Cyanobacteria (5.84%), Chloroflexota (4.18%), Planctomycetota (4.16%), and Firmicutes (3.69%). Beta diversity (Non-metric dimensional scaling analysis, nMDS) explained that surface and sub-surface groups had significantly different microbial community compositions (p = 0.01). Meanwhile, polluted sites exhibited more richness and diversity than unpolluted sites. Redundancy analysis (RDA) illustrated that Mn, Cu, Al, Co, Ni, Sand, and Cr had a sizable effect on the structure of microbiota communities (at the class level). This work highlights the potential responsibility of environmental variables in shaping the sedimentary microbiota of the Siangshan wetland via integrating various ecological variables with alteration of the microbiota composition.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3