A machine learning model-based satellite data record of dissolved organic carbon concentration in surface waters of the global open ocean

Author:

Laine Marko,Kulk Gemma,Jönsson Bror F.,Sathyendranath Shubha

Abstract

Dissolved Organic Carbon (DOC) is the largest organic carbon pool in the ocean. Considering the biotic and abiotic factors controlling DOC processes, indirect satellite methods for open ocean DOC estimation can be developed, using conceptual, empirical or statistical models, driven by multiple satellite products. In this study, we infer a time series of global DOC from data of the European Space Agency’s (ESA) Ocean Colour Climate Change Initiative (OC-CCI) in combination with a global database of in situ DOC observations. We tested empirical machine learning modelling approaches in which the available in situ data are used to train the models and to find empirical relationships between DOC and variables available from remote sensing. Of the tested methods, a random forest regression showed the best results, and the details of this model are further reported here. We present a time series of global open ocean DOC concentrations between 2010–2018 that is made freely available through the archive of the UK Centre for Environmental Data Analysis (CEDA).

Funder

European Space Agency

Simons Foundation

Academy of Finland

Publisher

Frontiers Media SA

Reference25 articles.

1. Optuna: A next-generation hyperparameter optimization framework;Akiba,2019

2. Remote sensing of CDOM, CDOM spectral slope, and dissolved organic carbon in the global ocean;Aurin;Appl. Sci.,2018

3. Odile Fanton d’Andon, and Vincent Vantrepotte. A new method to estimate the dissolved organic carbon concentration from remote sensing in the global open ocean;Bonelli;Remote Sens. Environ.,2022

4. ESA Sea Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_cci): Monthly sea surface salinity product, v2.31, for 2010 to 2019 BoutinJ. VergelyJ.-L. ReulN. CatanyR. KoehlerJ. MartinA. 2020

5. The ocean colour climate change initiative: Iii. a round-robin comparison on in-water bio-optical algorithms;Brewin;Remote Sens. Environ.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3