Long-term sediment organic carbon remineralization in different seagrass and macroalgae habitats: implication for blue carbon storage

Author:

Yamuza-Magdaleno Alba,Jiménez-Ramos Rocío,Casal-Porras Isabel,Brun Fernando G.,Egea Luis G.

Abstract

Seagrass and macroalgae beds are key blue carbon ecosystems in the ocean. However, coastal development and climate change are sparking a growing concern about the vulnerability of sediment organic carbon (OC) to remineralization after macrophyte perturbation. Thus, the aim of this study was to assess the potential of long-term remineralization of sediment OC stocks (1 year) in coastal vegetated habitats (i.e., seagrasses Zostera noltei and Cymodocea nodosa, macroalgae Caulerpa prolifera and unvegetated sediment) after complete disturbance of macrophyte meadows under conducive conditions to microorganisms growth (i.e., oxygen saturated, non-nutrient limitation, turbulence and dark). Leached dissolved organic carbon (DOC) from particulate organic carbon (POC) remineralization, carbonate dissolution and photo-reactivity of long-term persistent DOC were also evaluated. Our results evidenced that, sediment OC from Z. noltei and unvegetated habitats were entirely remineralized to CO2. However, sediment OC from C. nodosa and C. prolifera communities exhibited a significant fraction of recalcitrant OC, and therefore, a 42 and 46% of the sediment OC still remained after 1 year of culture, respectively. POC remineralization released relevant amounts of both labile and recalcitrant DOC, which showed low photo-reactivity. Finally, we discuss that the main argument to promote management, monitoring, and restoration programs for macrophytes is usually based on their sediment OC deposit, which favor larger species. The study presented here adds arguments to also include small macrophyte species, since their sediment OC may be highly labile and entirely remineralized to CO2 once these habitats are disturbed.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3