A systematic review of deep learning applications for rice disease diagnosis: current trends and future directions

Author:

Seelwal Pardeep,Dhiman Poonam,Gulzar Yonis,Kaur Amandeep,Wadhwa Shivani,Onn Choo Wou

Abstract

BackgroundThe occurrence of diseases in rice leaves presents a substantial challenge to farmers on a global scale, hence jeopardizing the food security of an expanding global population. The timely identification and prevention of these diseases are of utmost importance in order to mitigate their impact.MethodsThe present study conducts a comprehensive evaluation of contemporary literature pertaining to the identification of rice diseases, covering the period from 2008 to 2023. The process of selecting pertinent studies followed the guidelines outlined by Kitchenham, which ultimately led to the inclusion of 69 studies for the purpose of review. It is worth mentioning that a significant portion of research endeavours have been directed towards studying diseases such as rice brown spot, rice blast, and rice bacterial blight. The primary performance parameter that emerged in the study was accuracy. Researchers strongly advocated for the combination of hybrid deep learning and machine learning methodologies in order to improve the rates of recognition for rice leaf diseases.ResultsThe study presents a comprehensive collection of scholarly investigations focused on the detection and characterization of diseases affecting rice leaves, with specific emphasis on rice brown spot, rice blast, and rice bacterial blight. The prominence of accuracy as a primary performance measure highlights the importance of precision in the detection and diagnosis of diseases. Furthermore, the efficacy of employing hybrid methodologies that combine deep learning and machine learning techniques is exemplified in enhancing the recognition capacities pertaining to diseases affecting rice leaves.ConclusionThis systematic review provides insight into the significant research endeavours conducted by scholars in the field of rice disease detection during the previous decade. The text underscores the significance of precision in evaluation and calls for the implementation of hybrid deep learning and machine learning methodologies to augment disease identification, presenting possible resolutions to the obstacles presented by these agricultural hazards.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3