Heart fire for online live-streamed concerts: a pilot study of a smartwatch-based musician-listener interaction system

Author:

Wang Tianyi,Okada Shima

Abstract

Online live-streaming has become an essential segment of the music industry in the post-COVID- era. However, methods to enhance interaction between musicians and listeners at online concerts are yet to be adequately researched. In this pilot study, we propose Heart Fire, a system to promote musician-listener interaction that visualizes the listeners' mental states using a smartwatch-based architecture. Accordingly, the listeners' heart rates are first measured using a Galaxy smartwatch and then processed into a real-time animation of a burning flame, whose intensity is dependent on the heart rate, using Azure Kinect and TouchDesigner. The feasibility of the proposed system was confirmed using an experiment involving ten subjects. Each subject selected two types of music-cheerful and relaxing. The BPM and energy of each song were measured, and each subject's heart rate was monitored. Subsequently, each subject was asked to answer a questionnaire about the emotions they experienced. The results demonstrated that the proposed system is capable of visualizing audience response to music in real time.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3