Passive Control of Hydrodynamic Forces on a Circular Obstacle in a Transient Flow: FEM Computations

Author:

Ain Qurrat Ul,Khan Y.,Mahmood Rashid,Alameer A.,Majeed Afraz Hussain,Faraz N.

Abstract

Hydrodynamic forces are crucial in engineering applications; therefore, various research initiatives have been conducted to limit them. In this research, a passive control technique to investigate the fluid forces acting on a circular cylinder in a laminar flow regime is studied. The reliability of the usage of a splitter plate (passive control device) downstream of the obstacle in suppressing the fluid forces on a circular obstacle of diameterD=0.1is presented. The first parameter of the current study is the attachment of splitter plates of various lengths(Li)with the obstacle, whereas the gap separation(Gi)between the splitter plate and the obstacle is used as a second parameter. The control element of the first and second parameters are varied from0.1to0.3. For the attached splitter plates of lengths0.2and0.3, the oscillatory behavior of transient flow atRe=100is successfully controlled. For the gap separations0.1and0.2, the suppression of vortex shedding is also observed. However, it is observed that a splitter plate of too short length and a plate located at an inappropriate gap from an obstacle are worthless. Moreover, the present study is extended for power-law fluid in the same domain, and maximum drag reduction is achieved using the same strategy as for Newtonian fluid. The finite element method is utilized as a computational strategy for complicated nonlinear governing equations. For a clear physical depiction of the problem, velocity and pressure plots have been provided. It is concluded that the presence of a splitter plate has suppressed the vortex shedding and the flow regime turns out to be steady, as is evident from the nonoscillatory drag and lift coefficients.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3