The modified finite element method for heat and mass transfer of unsteady reacting flow with mixed convection

Author:

Arif Muhammad Shoaib,Abodayeh Kamaleldin,Nawaz Yasir

Abstract

This study reveals the extension of a mathematical model of heat and mass transfer of fluid flow over a sheet by incorporating the effect of non-linear mixed convection. The governing equations of flow phenomena are expressed as partial differential equations (PDEs). Similarity transformations are employed to get a dimensionless set of boundary value problems. Most of the existing relevant literature employed some solver to solve a set of differential equations, but this study implements the finite element method to tackle the boundary value problems. The employed finite element method is based on the Galerkin approach. For verifications of the obtained results, a set of linear and non-linear boundary value problems is also solved with Matlab solver bvp4c. The results are displayed in graphs by varying Grashof number, modified (solutal) Grashof number, non-linear convection parameters in heat and mass transfer, radiation parameter, Prandtl number, Schmidt number, and reaction rate parameter. Also, numerical values for the friction at the wall and local Nusselt and Sherwood numbers are given in tables. The problem in PDEs form is also solved with software that implements the finite element method to solve problems. The simulations are also provided, which is the outcome of the software. It is shown that the velocity profile escalates by growing values of thermal and solutal Grashof numbers. Problem-solving techniques from this study may be used in future research to address other unsolved heat transfer fluid physics issues.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3