Lightweight neural architectures to improve COVID-19 identification

Author:

Hassan Mohammad Mehedi,AlQahtani Salman A.,Alelaiwi Abdulhameed,Papa João P.

Abstract

The COVID-19 pandemic has had a global impact, transforming how we manage infectious diseases and interact socially. Researchers from various fields have worked tirelessly to develop vaccines on an unprecedented scale, while different countries have developed various sanitary protocols to deal with more contagious variants. Machine learning-assisted diagnosis has emerged as a powerful tool that can help health professionals deliver faster and more accurate outcomes. However, medical systems that rely on deep learning often require extensive data, which may be impractical for real-world applications. This paper compares lightweight neural architectures for COVID-19 identification using chest X-rays, highlighting the strengths and weaknesses of each approach. Additionally, a web tool has been developed that accepts chest computer tomography images and outputs the probability of COVID-19 infection along with a heatmap of the regions used by the intelligent system to make this determination. The experiments indicate that most lightweight architectures considered in the study can identify COVID-19 correctly, but further investigation is necessary. Lightweight neural architectures show promise in computer-aided COVID-19 diagnosis using chest X-rays, but they did not reach accuracy rates above 88%, which is necessary for medical applications. These findings suggest that additional research is necessary to improve the accuracy of lightweight models and make them practical for real-world use.

Funder

King Abdulaziz City for Science and Technology

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference33 articles.

1. Explaining COVID-19 diagnosis with Taylor decompositions;Hassan;Neural Comput Appl,2022

2. Explaining nonlinear classification decisions with deep Taylor decomposition;Montavon;Pattern Recognition,2017

3. Understanding and comparing deep neural networks for age and gender classification;Samek,2017

4. Normalizing images is good to improve computer-assisted COVID-19 diagnosis;Santos,2021

5. Efficientnet: Rethinking model scaling for convolutional neural networks;Tan,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3