Author:
Chang L.,Caneses J. F.,Thakur S. C.
Abstract
The wave propagation and power deposition inside and outside the blue-core helicon plasma are computed, together with their transitional behaviours prior to and after the blue-core formation. Computations refer to the experiments on the CSDX (controlled shear decorrelation experiment) (Thakur et al., Plasma Sources Science and Technology 23: 044,006, 2014 and Thakur et al., IEEE Transactions on Plasma Science 43: 2754–2759, 2015). It is found that the radial profile of wave electric field peaks off-axis during the blue-core formation, and the location of this peak is very close to that of particle transport barrier observed in experiment; the radial profile of wave magnetic field shows multiple radial modes inside the blue-core column, which is consistent with the experimental observation of coherent high m modes through Bessel function. The axial profiles of wave field indicate that the decay length shortens for increased external field strength, especially when the blue-core mode has been achieved, and this length is relatively longer inside the core than that outside. The wave energy density is overall lower in two orders after blue-core formation than that prior to, and the energy distribution shows a periodic boundary layer near the edge of blue-core column. The dispersion relation inside the blue-core column suggests the presence of two radial modes, while outside the blue-core column it shows no variation, i.e. constant wave number with changed frequency. The power deposition appears to be off-axis in the radial direction, forming a hollow profile, and when the blue-core mode has been formed it shows periodic structure in the axial direction. Analyses based on the step-like function theory and introduced blue-core constant provide consistent results and more physics understanding. These details of wave propagation and power deposition during the blue-core formation are presented for the first time, and helpful for understanding the mechanism of blue-core phenomenon. The equivalence of blue-core plasma column to optical fiber for electromagnetic communication is also explored, and preliminary calculation shows that total reflection can indeed occur if the incident angle is larger than a threshold value. This may inspire a novel application of helicon plasma, and is one of the most interesting findings of present work.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Reference50 articles.
1. Plasma production using a standing helicon wave;Boswell;Phys Lett A,1970
2. Helicons-the early years;Boswell;IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc,1997
3. Helicons-the past decade;Chen;IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc,1997
4. Helicon discharges and sources: A review;Chen;Plasma Sourc Sci Technol,2015
5. Helicon high-density plasma sources: Physics and applications;Shinohara;Adv Phys X,2018
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献