Influence of Multiple Animal Scanning on Image Quality for the Sedecal SuperArgus2R Preclinical PET Scanner

Author:

Efthimiou Nikos,Wright John D.,Clayton Luke,Renard Isaline,Zagni Federico,Caribé Paulo R.R.V.,Archibald Stephen J.,Cawthorne Christopher J.

Abstract

Background: Increased throughput in small animal preclinical studies using positron emission tomography leads to reduced costs and improved efficiency of experimental design, however the presence of multiple off-centre subjects, as opposed to a single centered one, may affect image quality in several ways.Methods: We evaluated the count rate performance using a NEMA scatter phantom. A Monte Carlo simulation of the system was validated against this dataset and used to simulate the count rate performance for dual scatter phantoms. NEMA NU4 image quality phantoms were then scanned in the central and offset positions, as well as in the offset position next to a uniform activity phantom. Uniformity, recovery coefficients and spillover ratios were then compared, as were two time frames for acquisition.Results: Count rate performance assessed with a single NEMA scatter phantom was in line with previous literature, with simulated data in good agreement. Simulation of dual scatter phantoms showed an increase in scatter fraction. For the NEMA Image Quality phantom, uniformity and Recovery coefficients were degraded in the offset, and dual phantom cases, while spillover ratios were increased, notably when the chamber was placed nearest the gantry. Image quality metrics were comparable between the 20- and 10 min timeframes.Conclusion: Dual animal scanning results in some loss of image quality on the Sedecal Argus PET scanner; however, this degradation is within acceptable limits.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference40 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3