An effective method for epidemic suppression by edge removing in complex network

Author:

Liang Guangbo,Cui Xiaodong,Zhu Peican

Abstract

Since the birth of human beings, the spreading of epidemics such as COVID-19 affects our lives heavily and the related studies have become hot topics. All the countries are trying to develop effective prevention and control measures. As a discipline that can simulate the transmission process, complex networks have been applied to epidemic suppression, in which the common approaches are designed to remove the important edges and nodes for controlling the spread of infection. However, the naive removal of nodes and edges in the complex network of the epidemic would be practically infeasible or incur huge costs. With the focus on the effect of epidemic suppression, the existing methods ignore the network connectivity, leading to two serious problems. On the one hand, when we remove nodes, the edges connected to the nodes are also removed, which makes the node is isolated and the connectivity is quickly reduced. On the other hand, although removing edges is less detrimental to network connectivity than removing nodes, existing methods still cause great damage to the network performance in reality. Here, we propose a method to measure edge importance that can protect network connectivity while suppressing epidemic. In the real-world, our method can not only lower the government’s spending on epidemic suppression but also persist the economic growth and protect the livelihood of the people to some extent. The proposed method promises to be an effective tool to maintain the functionality of networks while controlling the spread of diseases, for example, diseases spread through contact networks.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3