Effects of Surface Tension on the Stability of Surface Nanobubbles

Author:

Pan Yongcai,He Bing,Wen Binghai

Abstract

The existence of surface nanobubbles has already been confirmed by variable detection methods, but the mechanism of their extraordinary stability remains unclear and has aroused widespread research interest in the past 2 decades. Experiments and theoretical analyses have tried to account for these stabilities such as the very long lifetime, very high pressure and very small contact angle. Attractive hydrophobic potential was applied to complement the pinning-oversaturation theory and successfully explain the survival of surface nanobubbles in undersaturation environment by some researchers. However, the survival of nanobubbles on hydrophilic surface still requires sizeable oversaturation. In this paper, we introduce the variable surface tensions, namely Tolman-dependence and state-dependence, and show that they effectively promote the stability of nanobubbles. The decrease in surface tension can lead to larger contact angle and even make the nanobubbles survivable on the highly hydrophilic surface. In Tolman-dependence, the changing rate in the contact angle evolution slows down, which is more obvious when the bubble size is close to the Tolman length. The contact angle is also getting larger in the state-dependence, and the increase of the gas saturation degree is beneficial to the stability of surface nanobubbles. With the gas saturation ratio of 3, the bubbles on the quite hydrophilic surface can also be stable, while grow up on the hydrophobic surface. The variable surface tensions weaken the need of saturation degree for the surface nanobubbles’ stability.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference60 articles.

1. Micro and Nanobubble Technologies as a New Horizon for Water-Treatment Techniques: A Review;Temesgen;Adv Colloid Interf Sci,2017

2. Co3Mo3N-An Efficient Multifunctional Electrocatalyst;Yuan;The Innovation,2021

3. Generation and Stability of Bulk Nanobubbles: A Review and Perspective;Zhou;Curr Opin Colloid Interf Sci,2021

4. Inert Gas Deactivates Protein Activity by Aggregation;Zhang;Sci Rep,2017

5. Boundary Slip and Nanobubble Study in Micro/nanofluidics Using Atomic Force Microscopy;Wang;Soft Matter,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3