An all metasurface-based fiber needle probe for Raman spectroscopy

Author:

Zhang Shuyan,Bi Renzhe,Zhang Ruochong,Qi Yi,Salim Rasyiqah Bte Shaik Mohamed,Olivo Malini

Abstract

Optical fiber-based spectroscopy sensors are widely used for industrial and biomedical applications. They normally consist of at least one excitation fiber and one collection fiber. However, the excitation and collection fibers are placed side by side, so the focal spots do not coincide. In addition, Raman probes whose excitation and emission span a wide wavelength range are limited by wavelength-dependent focal length variation, low sensitivity, and bulky size impeding their clinical adoption. To overcome the challenges, we propose an all metasurface integrated fiber solution. The metasurface technology is well suited for this application because it relies on specially designed nanostructures to manipulate light properties in an ultrathin footprint. Here we used our earlier demonstrated dual-wavelength excitation Raman probe as an example. The two excitation fibers at 671 nm and 785 nm feature a hybrid metasurface lens (metalens) including a narrow band pass filter and an off-axis focusing metalens. The collection fiber at 810—910 nm features an achromatic broadband on-axis focusing metalens. Simulation results show that by integrating the metalenses, the focal spots of the excitation beams and the collection beam coincide with a beam size of 4.6 µm, 4.6 µm, and 11.3 µm in the x-, y-, and z-axis, respectively. Moreover, the probe size shrinks by 100 times and becomes a needle probe. The needle probe will enable new applications such as small animal in vivo experiments, medical endoscopy experiments, and neonatal skin analysis for hard-to-reach areas. Furthermore, the proposed solution can be applied to work with any optical fiber-based spectroscopy sensors because the designs can be readily fabricated and put into practical use.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3