Author:
Li Pei,Chen Ting,Chen Liang,Tan Yan-Wen
Abstract
Improved single-molecule methods can largely increase our understanding of underlying molecular mechanism during cellular signal transduction. In contrast to conventional bulk methods, monitoring molecules one at a time can circumvent averaging effects and acquire unique information. With single-molecule techniques, quantitative characterizations can be achieved at microscopic level, especially for biochemical systems with strong heterogeneity. Here we review four fundamental single-molecule techniques including total internal reflection fluorescence imaging, single-molecule fluorescence recovery after photobleaching, single-molecule Förster resonance energy transfer, and fluorescence correlation/cross-correlation spectroscopy. These techniques are frequently employed in quantitatively investigating the molecular translocation, protein-protein interactions, aggregations, and conformational dynamics involved in the signal transduction both in vitro and in vivo. We also summarized the basic principles and implementations of these single-molecule techniques, as well as the conjunct applications extending the single-molecule measurements to multiple dimensions.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics