Bayesian model of tilling wheat confronting climatic and sustainability challenges

Author:

Ali Qaisar

Abstract

Conventional farming poses threats to sustainable agriculture in growing food demands and increasing flooding risks. This research introduces a Bayesian Belief Network (BBN) to address these concerns. The model explores tillage adaptation for flood management in soils with varying organic carbon (OC) contents for winter wheat production. Three real soils, emphasizing texture and soil water properties, were sourced from the NETMAP soilscape of the Pang catchment area in Berkshire, United Kingdom. Modified with OC content at four levels (1, 3, 5, 7%), they were modeled alongside relevant variables in a BBN. The Decision Support System for Agrotechnology Transfer (DSSAT) simulated datasets across 48 cropping seasons to parameterize the BBN. The study compared tillage effects on wheat yield, surface runoff, and GHG-CO2 emissions, categorizing model parameters (from lower to higher bands) based on statistical data distribution. Results revealed that NT outperformed CT in the highest parametric category, comparing probabilistic estimates with reduced GHG-CO2 emissions from “7.34 to 7.31%” and cumulative runoff from “8.52 to 8.50%,” while yield increased from “7.46 to 7.56%.” Conversely, CT exhibited increased emissions from “7.34 to 7.36%” and cumulative runoff from “8.52 to 8.55%,” along with reduced yield from “7.46 to 7.35%.” The BBN model effectively captured uncertainties, offering posterior probability distributions reflecting conditional relationships across variables and offered decision choice for NT favoring soil carbon stocks in winter wheat (highest among soils “NT.OC-7%PDPG8,” e.g., 286,634 kg/ha) over CT (lowest in “CT.OC-3.9%PDPG8,” e.g., 5,894 kg/ha). On average, NT released minimum GHG- CO2 emissions to “3,985 kgCO2eqv/ha,” while CT emitted “7,415 kgCO2eqv/ha.” Conversely, NT emitted “8,747 kgCO2eqv/ha” for maximum emissions, while CT emitted “15,356 kgCO2eqv/ha.” NT resulted in lower surface runoff against CT in all soils and limits runoff generations naturally for flood alleviation with the potential for customized improvement. The study recommends the model for extensive assessments of various spatiotemporal conditions. The research findings align with sustainable development goals, e.g., SDG12 and SDG13 for responsible production and climate actions, respectively, as defined by the Agriculture and Food Organization of the United Nations.

Publisher

Frontiers Media SA

Reference133 articles.

1. Successful adaptation to climate change across scales;Adger;Glob. Environ. Chang.,2005

2. Climate change and process-based soil modeling;Ahmed,2023

3. Dynamic modeling;Ahmed;Syst. Model.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3