Plant leaf disease recognition based on improved SinGAN and improved ResNet34

Author:

Chen Jiaojiao,Hu Haiyang,Yang Jianping

Abstract

The identification of plant leaf diseases is crucial in precision agriculture, playing a pivotal role in advancing the modernization of agriculture. Timely detection and diagnosis of leaf diseases for preventive measures significantly contribute to enhancing both the quantity and quality of agricultural products, thereby fostering the in-depth development of precision agriculture. However, despite the rapid development of research on plant leaf disease identification, it still faces challenges such as insufficient agricultural datasets and the problem of deep learning-based disease identification models having numerous training parameters and insufficient accuracy. This paper proposes a plant leaf disease identification method based on improved SinGAN and improved ResNet34 to address the aforementioned issues. Firstly, an improved SinGAN called Reconstruction-Based Single Image Generation Network (ReSinGN) is proposed for image enhancement. This network accelerates model training speed by using an autoencoder to replace the GAN in the SinGAN and incorporates a Convolutional Block Attention Module (CBAM) into the autoencoder to more accurately capture important features and structural information in the images. Random pixel Shuffling are introduced in ReSinGN to enable the model to learn richer data representations, further enhancing the quality of generated images. Secondly, an improved ResNet34 is proposed for plant leaf disease identification. This involves adding CBAM modules to the ResNet34 to alleviate the limitations of parameter sharing, replacing the ReLU activation function with LeakyReLU activation function to address the problem of neuron death, and utilizing transfer learning-based training methods to accelerate network training speed. This paper takes tomato leaf diseases as the experimental subject, and the experimental results demonstrate that: (1) ReSinGN generates high-quality images at least 44.6 times faster in training speed compared to SinGAN. (2) The Tenengrad score of images generated by the ReSinGN model is 67.3, which is improved by 30.2 compared to the SinGAN, resulting in clearer images. (3) ReSinGN model with random pixel Shuffling outperforms SinGAN in both image clarity and distortion, achieving the optimal balance between image clarity and distortion. (4) The improved ResNet34 achieved an average recognition accuracy, recognition precision, recognition accuracy (redundant as it’s similar to precision), recall, and F1 score of 98.57, 96.57, 98.68, 97.7, and 98.17%, respectively, for tomato leaf disease identification. Compared to the original ResNet34, this represents enhancements of 3.65, 4.66, 0.88, 4.1, and 2.47%, respectively.

Publisher

Frontiers Media SA

Reference28 articles.

1. Futuregan: anticipating the future frames of video sequences using spatio-temporal 3d convolutions in progressively growing gans;Aigner,2018

2. Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning;Alkanan;Front. Appl. Math. and Stat.,2024

3. Advancing automatic plant classification system in Saudi Arabia: introducing a novel dataset and ensemble deep learning approach;Amri;Modeling Earth Syst. Environ.,2024

4. An empirical study on generalizations of the ReLU activation function;Banerjee,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3