Large-Scale Evolutionary Optimization Approach Based on Decision Space Decomposition

Author:

Ma Jia,Chang Fengrong,Yu Xinxin

Abstract

The identification of decision variable interactions has a crucial role in the final outcome of the algorithm in the large-scale optimization domain. It is a prerequisite for decomposition-based algorithms to achieve grouping. In this paper, we design a recognition method with higher efficiency and grouping accuracy. It is based on the decomposition strategy of min hash to solve large-scale global optimization (LSGO) problems, called MHD. Our proposed method focuses on discovering the interactions of decision variables through min hash and forming subcomponents with a principle that the interdependencies between these subcomponents are maintained at a minimal level. This is described as follows: first, the min hash performs several permutations of the vector composed of decision variables. Second, the index value of the first non-zero row of the vector after rearrangement is found to obtain the new feature vector. Third, the probability of identical data at each position is calculated based on the new feature vector to decide whether there are some certain interactions between the decision variables. The advantages of min hash are: simpler computation and greater efficiency improvement than comparison between two or two decision variables; ability to find similar decision variables very quickly; and ability to cluster decision variables in a simple way. Therefore, the efficiency as well as the reliability of MHD is guaranteed. On the accuracy aspect, the proposed algorithm performs well in various types of the large-scale global optimization benchmark test function. Finally, the experimental results analysis and summarize the performance competitiveness of our proposed MHD algorithm from several aspects when it is used within a co-evolutionary framework.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference43 articles.

1. Dimensionality Reduction-Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography;Bhowmik;Sci. Rep.,2016

2. Large-scale Global Optimization Using Cooperative Coevolution with Variable Interaction Learning;Chen,2011

3. Path-Based Multi-Sources Localization in Multiplex Networks;Cheng;Chaos, Solit. Fractals,2022

4. Decomposition Principle for Linear Programs;Dantzig;Operations Res.,1960

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart grid-based manufacturing by nanoparticle analysis with evolutionary optimization probability detection;The International Journal of Advanced Manufacturing Technology;2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3