Author:
Bacha Habib Ben,Abdullah Abdelkader Saad,Alqasir Umar,Salama Reda S.,Abdelgaied Mohamed,Kabeel Abd Elnaby
Abstract
Middle East and North Africa (MENA) countries are experiencing rapid population growth, so water and electricity consumption plays a crucial role in the sustainable development of these countries. To overcome the water scarcity and electricity problems facing the MENA region, the developed cooling/preheating small PVT-RO desalination plants have been proposed as a practical solution. To achieve sustainable water and energy development in the MENA region, this study presents a commendable and highly efficient renewable energy project for freshwater production and electricity generation to solve the energy crisis and water scarcity in the MENA countries. Therefore, this study aims to develop a cooling/preheating small PVT-RO desalination plant to facilitate freshwater supply to remote regions and produce electricity. This was done by connecting photovoltaic/thermal (PVT) collectors with reverse osmosis (RO) desalination systems, where seawater is used as a medium to cool photovoltaic cells to increase electric power generation and at the same time recover thermal energy and use it in the initial heating of feed seawater before it is fed into the RO plants, thus increasing its productivity. The results indicate that using the photovoltaic thermal panels as preheating units will lead to a 0.135 kWh/m3 reduction in the rate of specific electricity consumption for the RO desalination plant, as well as increase the electricity generation from PVT panels by a rate of 8%. The economic feasibility presented that the proposed developed cooling/preheating small PVT-RO desalination plant represents an effective technology that reduced the freshwater cost by a rate of 49.5%.
Funder
Prince Sattam Bin Abdulaziz University
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献