An Enhancement of the Solar Panel Efficiency: A Comprehensive Review

Author:

Parthiban R.,Ponnambalam P.

Abstract

Recently solar panels are gaining popularity in the field of non-conventional energy sources for generating green and clean electric power. On the negative side, the photovoltaic efficiency is reduced with an increase in ambient temperature. The production of energy is dropped by 0.33% for every degree Celsius above STC. Consequently, the electric power which is generated by the solar panel may not be sufficient to run the load. It is important to realize that in some applications, such as standalone electric vehicles, space for providing an additional solar panel to compensate for the decremented output power may not be feasible. By implementing the cooling arrangements, this excessive heat might be reduced. Several cooling techniques have been implemented, named as active and passive methods. This article presents a review on maximizing the efficiency of the solar panel by utilizing different cooling methods and by integrating TEG with solar panels.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference125 articles.

1. The Thermoelectric Solar Panels;Ahiska;jpnu,2016

2. Efficiency Improvement for Solar Cells Panels by Cooling;Ahmed,2018

3. Photovoltaic Solar Thermal (PV/T) Collectors Past, Present and Future: A Review;Al-Waeli;Int. J. Appl. Eng. Res.,2016

4. Field Study of Various Air Based Photovoltaic/Thermal Hybrid Solar Collectors;Amori;Renew. Energy,2014

5. Numerical and Experimental Investigation of Air Cooling for Photovoltaic Panels Using Aluminum Heat Sinks;Arifin;Int. J. Photoenergy,2020

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3