Enhanced bi-level optimal scheduling strategy for distribution network with multi-microgrids considering source-load uncertainties

Author:

Li Guoliang,Lin Xia,Kong Lingyuan,Xia Wenhua,Yan Shuang

Abstract

With the increasing integrations of renewable energy resources into distribution networks (DNs) and microgrids (MGs), the imperative for an effective market scheduling mechanism becomes paramount to enhance the operational safety, reliability, and economic efficiency of distribution grids. Taking advantage of bi-level programming theory, this study meticulously formulates a comprehensive optimization scheduling model for the multi-MGs distribution network. The upper-level optimization objective is to minimize both the operational losses and total costs of the DN. Concurrently, the lower-level optimization pursues the maximization of daily operational revenue for MGs. Recognizing the pervasive impact of the inherent uncertainty associated with renewable energy sources on system safety and reliability, a cutting-edge scenario-based stochastic planning framework is introduced. The methodology integrates a heuristic matrix matching approach to effectively handle the intricate challenges posed by uncertainties from wind and photovoltaic generations. Moreover, in addressing the proposed nonlinear models, a sophisticated method is employed, utilizing the second-order cone relaxation and linearization methods. These methods meticulously transform the upper and lower-level models into second-order cone planning and mixed-integer linear programming issues, respectively. Finally, the proposed methodologies are rigorously scrutinized and validated with intricate case studies, providing a nuanced understanding of their efficacy. The empirical results underscore the theoretical feasibility and superiority of the proposed scheduling scheme. Notably, the operational performance of the DN as well as the economic viability of multiple MGs can also be significantly improved.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3