Challenges and opportunities for process intensification in Europe from a process systems engineering perspective

Author:

Li Qing,Somoza-Tornos Ana,Grievink Johan,Kiss Anton A.

Abstract

Process Intensification (PI) is an effective way to enhance process efficiency and sustainability at affordable costs and efforts, attracting particular interest in the European area, as one of the most important chemical production areas in the world. PI primarily contributes by developing and testing new processing technologies that once integrated within a process improve the overall process performance substantially but as a result, it may alter the overall process (flowsheet) structure and its dynamic behavior. As such PI plays a key role in improving energy efficiency, optimizing resource allocation, and reducing environmental impact of industrial processes, and thereby leading to a cost-effective, eco-efficient, low-carbon and sustainable industry. However, along with opportunities, the PI new technologies have challenges related to failures in longer-term performance. In this respect, Process Systems Engineering (PSE) stance is more on integration aspects of new PI technologies into processes by making process (re)designs, doing operability studies, and performance optimizations within a supply chain setting. PSE contributes to overcoming the challenges by providing systematic approaches for the design and optimization of PI technologies. This perspective paper is a lightly referenced scholarly opinion piece about the status and directions of process intensification field from a PSE viewpoint. Primarily, it focuses on PSE perspectives towards sustainable lower energy usage process systems and provides a brief overview of the current situation in Europe. It also emphasizes the key challenges and opportunities for (new) PI technologies considering their integration in a process in terms of process synthesis and design, process flowsheet optimization, process and plantwide control, (green) electrification, sustainability improvements. Potential research directions on these aspects are given from an industrial and academic perspective of the authors.

Publisher

Frontiers Media SA

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3