An experimental research of the influence on critical heat flux of a rod bundle under certain inlet temperatures

Author:

Duan Minghui,Zhao Minfu,Wei Junhan,Xu Yongwang

Abstract

Critical heat flux (CHF) is one of the most concerned thermal hydraulic phenomena in reactor safety analysis. It involves complex two-phase flow heat transfer mechanism, and has not been fully understood, so the prediction of critical heat flux mainly depends on CHF correlations obtained under limited experimental conditions. At present, CHF correlations are generally developed with pressure, mass flux and quality as key independent variables. And correspondingly, the test matrix of a CHF test consists of the above parameters. However, it is impossible to perform CHF tests accurately according to the predetermined quality. In CIAE, a CHF experimental research of a 5 × 5 uniformly heated rod bundle has been carried out. In the experiment, the inlet temperature of the test section was directly taken as a parameter in the test matrix. The CHF data were achieved by stepwise increasing the heating power. The test conditions covered the pressure of 2.8–15.5 MPa, the mass flux of 845–3533 kg/(m2·s), and the inlet temperature of 100°C–300°C. The test data have been analyzed to obtain the thermal-hydraulic parameter influences on CHF by taking the inlet temperature as a variable. The results indicated that, within the test condition range, under the same inlet temperatures, CHF was hardly affected by pressure, and linearly increased with the increasing mass flux. With the increase of inlet temperature, the enhancement of CHF with the increasing mass flux gradually weakens. And CHF was linearly decreased with the increasing inlet temperature under the same mass flux. By contrast, the parameter influences on CHF were more complex by taking the local quality as a variable. According to the research, it can be concluded that, it has an advantage of simplifying the CHF correlation form to take the inlet temperature of the test section as a variable parameter. The research can provide new ideas for CHF experiment, data analysis and correlation development.

Publisher

Frontiers Media SA

Reference40 articles.

1. High-temperature supercritical pressure water loop. V. Forced convection heat transfer to water after the critical heat flux at high supercritical pressures;Bishop;Westinghouse Can. At. Power Rep. WCAP-,1964

2. Critical heat flux in flow boiling - review of the current understanding and experimental approaches;Bruder;Heat. Transf. Eng.,2016

3. Overview of CEA capabilities related to CHF experiments for LWR;Clément,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3