Prediction of agricultural carbon emissions in China based on a GA-ELM model

Author:

Guo Xiaoyang,Yang Jingyi,Shen Yang,Zhang Xiuwu

Abstract

Introduction: Strengthening the early warning of greenhouse gas emissions from agriculture is an important way to achieve Goal 13 of the Sustainable Development Goals. Agricultural carbon emissions are an important part of greenhouse gases, and accelerating the development of green and low-carbon agriculture is of great significance for China to achieve high-quality economic development and the goal of “carbon neutrality in peak carbon dioxide emissions”.Methods: By measuring the total agricultural carbon emissions in China and seven administrative regions from 2000 to 2021, the paper analyzes the influencing factors of agricultural carbon emissions in China by using STIRPAT environmental pressure model, and on this basis, predicts the peak trend of agricultural carbon emissions in China under different development scenarios by using the extreme learning machine model optimized by genetic algorithm.Results: The results showed that the extreme learning machine model improved by the genetic algorithm can overcome the shortcoming that the extreme learning machine model is easy to fall into the local optimal solution, thus obtaining higher prediction accuracy. At the same time, from 2000 to 2021, the total agricultural carbon emissions in China showed a continuous fluctuation trend, and due to the constraints of the agricultural economic level, agricultural industrial structure, and agricultural human capital, the agricultural carbon emissions showed spatial differentiation. It is worth noting that, in the context of green development, the agricultural carbon emissions of the seven regions in China all have the potential to achieve the “peak carbon dioxide emissions” goal in 2030, with only a slight difference at the peak.Discussion: The research results of this paper provide evidence for the government to formulate flexible, accurate, reasonable and appropriate agricultural carbon reduction policies, which is helpful to strengthen the exchanges and cooperation of regional agricultural and rural carbon reduction and fixation, and actively and steadily promote China's agriculture to achieve the goal of “peak carbon dioxide emissions carbon neutrality”.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference78 articles.

1. Greenhouse gas emissions of the poultry sector in Greece and mitigation potential strategies;Akamati;Gases,2023

2. Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling;Bokde;Appl. Energy,2021

3. GHG emission accounting and reduction strategies in the academic sector: a case study in Mexico;Cardoza Cedillo;Sustainability,2023

4. Analysis on influencing factors of carbon footprint of energy consumption in Beijing —— based on STIRPAT model and least squares model;Chen;Journals China Environ. Sci.,2014

5. Main pathways of carbon reduction in cities under the target of carbon peaking: a case study of nanjing, China;Chen;Sustainability,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3