Author:
Zhou Xin,Zhang Xian,Wang Yuemei,Wu Zhen
Abstract
To solve the global water shortages and serious water pollution problems, research on semiconductor photocatalysts has generated significant research attention. The degradation of pollutants by titanium dioxide (TiO2) exceeds other semiconductor materials. However, its wide bandgap restricts the photocatalytic reaction under visible light. The large specific surface area and good thermal conductivity of graphene yielded an effective graphene-TiO2 catalyst combination effective under visible light. 2D graphene-TiO2 composites (2D-GTC) have shown promise, so a study of the preparation methods, mechanism and catalytic effect of different pollutants on this material was undertaken. In this current review, the characteristics of different graphene and TiO2 composites and their preparation methods, as well as the effects of different synthesis methods on the catalyst are introduced. The reaction mechanism of 2D-GTC catalysts, the degradation effects of different pollutants in water are all reviewed.
Funder
Natural Science Foundation of Inner Mongolia
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献