Equivalent simulation method for total pressure distortion of ship inlet

Author:

Wang Zhong-Yi,He Chenxin,Wu Yue,Qu Yong-Lei

Abstract

According to the use of marine gas turbines, inlet distortion is caused by the bending of the compressor inlet port. The total pressure distortion is the external stability reduction factor that has the greatest impact on the engine’s aerodynamic stability. This research designs a pressure distortion simulation device, which achieves the goal of providing the target distortion flow field for marine compressors by inserting plugboards of different heights and shapes into the inlet duct. The variation pattern of the entire flow field after inserting different parameter plugboards is obtained through distortion experiments and numerical simulations. Summarizes a prediction formula for total pressure distortion under different working conditions, with a verified error of less than 1.5%. In addition, the straight plugboard is changed to arc plugboard or concave and convex plugboard, the total pressure distortion distribution pattern can be changed while the range of the circumferential low-pressure zone remains unchanged. The distortion index of the distortion simulator designed by this research institute can be adjusted within the range of 0.5%–5%, while providing various distortion pattern. The distortion simulator meets the requirements of the comprehensive distortion index needed for the relevant distortion test of the marine engine and provides assistance for ship engine design and optimization.

Publisher

Frontiers Media SA

Reference36 articles.

1. Development of improved methods for simulating aircraft inlet distortion in turbine engine ground tests;Beale,2002

2. Requirements and advances in simulating aircraft inlet total-pressure distortion in turbine engine ground tests;Beale,2006

3. Demonstration of a transient total-pressure distortion generator for simulating aircraft inlet distortion in turbine engine ground test;Beale,2007

4. Effects of steady-state pressure distortion on the stall margin of a J85-21 turbojet engine;Bobula,1979

5. Evaluation with a turbofan engine of air jets as a steady-state inlet flow distortion device technical memorandum;Braithwaite,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3