Author:
Tontapha Sarawut,Uppachai Pikaned,Amornkitbamrung Vittaya
Abstract
Dye-sensitized solar cells (DSSCs) have been developed as a promising photovoltaic cell type in recent decades because of their low cost, environmental friendliness, ease of fabrication, and suitability for a wide range of indoor and outdoor applications, especially under diverse shaded and low-light condition. They are typically composed of three main components: a transparent conducting oxide (TCO) substrate-based working electrode with wide-bandgap semiconductors and dye sensitizer molecules, an electrolytic mediator based on redox couple species, and a TCO-based counter electrode consisting of catalyst materials. The development of intrinsic and functional organic, inorganic, metal oxide, composite, and carbon-based materials has been intensively studied to enhance the efficiency of DSSCs. A simple and low-cost fabrication process that uses natural products is also considered essential for further large-scale production. In this article, we review the fabrication of various functional materials and their effects on DSSC performance.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献