Assessing the impact of marine renewable energy in Portugal: an analysis based on ACO-TCN-attention

Author:

Song Haoyan,Gao Jingran

Abstract

As the global demand for renewable energy continues to increase, marine renewable energy has attracted much attention as a potential source of clean energy. As a country with rich marine resources, Portugal’s marine environment is of great significance to the development of marine energy. However, the current impact assessment of marine renewable energy projects has shortcomings such as incomplete understanding of ecosystems, incomplete consideration of fishery resources and socioeconomic impacts, lack of accuracy, and failure to consider geographical differences, thus lacking comprehensiveness and accuracy. To this end, we propose the ACO-TCN-Attention model to address these shortcomings in current impact assessments of marine renewable energy projects. The goal of this model is to provide a more comprehensive, precise and nuanced analysis to better understand the impacts of these projects on ecosystems, socio-economics and local communities. “ACO-TCN-Attention” is a model architecture that combines multiple machine learning and deep learning concepts. It includes three main parts: Ant Colony Optimization (ACO), Temporal Convolutional Network (TCN) and Attention mechanism. The ant colony optimization model simulates the behavior of ants and is used to optimize the operating strategies of marine renewable energy projects. Temporal Convolutional Network specializes in processing time series data and improves the prediction accuracy of the model. The attention mechanism allows the model to dynamically focus on the pieces of information that are most important for the current task. Extensive experimental evaluation shows that our method performs well on multiple datasets, significantly outperforming other models. This research is of great significance as it provides new methods and tools for improving the environmental impact assessment of marine renewable energy projects. By understanding the potential impacts of projects more accurately, we can better balance the relationship between the development of renewable energy and environmental protection, supporting the achievement of the Sustainable Development Goals. This research also provides useful guidance and reference for future research and practice in the field of marine energy.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3