Co-Design of a Trustworthy AI System in Healthcare: Deep Learning Based Skin Lesion Classifier

Author:

Zicari Roberto V.,Ahmed Sheraz,Amann Julia,Braun Stephan Alexander,Brodersen John,Bruneault Frédérick,Brusseau James,Campano Erik,Coffee Megan,Dengel Andreas,Düdder Boris,Gallucci Alessio,Gilbert Thomas Krendl,Gottfrois Philippe,Goffi Emmanuel,Haase Christoffer Bjerre,Hagendorff Thilo,Hickman Eleanore,Hildt Elisabeth,Holm Sune,Kringen Pedro,Kühne Ulrich,Lucieri Adriano,Madai Vince I.,Moreno-Sánchez Pedro A.,Medlicott Oriana,Ozols Matiss,Schnebel Eberhard,Spezzatti Andy,Tithi Jesmin Jahan,Umbrello Steven,Vetter Dennis,Volland Holger,Westerlund Magnus,Wurth Renee

Abstract

This paper documents how an ethically aligned co-design methodology ensures trustworthiness in the early design phase of an artificial intelligence (AI) system component for healthcare. The system explains decisions made by deep learning networks analyzing images of skin lesions. The co-design of trustworthy AI developed here used a holistic approach rather than a static ethical checklist and required a multidisciplinary team of experts working with the AI designers and their managers. Ethical, legal, and technical issues potentially arising from the future use of the AI system were investigated. This paper is a first report on co-designing in the early design phase. Our results can also serve as guidance for other early-phase AI-similar tool developments.

Publisher

Frontiers Media SA

Reference95 articles.

1. Foresight into AI Ethics in Healthcare (FAIE-H): A Toolkit for Creating an Ethics Roadmap for Your Healthcare AI Project;Adamson,2020

2. High-Level Expert Group on Artificial Intelligence2019

3. Too Vulnerable to Involve? Challenges of Engaging Vulnerable Groups in the Co-production of Public Services through Research;Amann;Int. J. Public Adm.,2021

4. Cancer Facts & Figures 2021,2021

5. Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions;Argenziano;Arch. Dermatol.,1998

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3