Direct Full-Length RNA Sequencing Reveals an Important Role of Epigenetics During Sexual Reversal in Chinese Soft-Shelled Turtle

Author:

Zhou Tong,Chen Guobin,Chen Meng,Wang Yubin,Zou Guiwei,Liang Hongwei

Abstract

Sex dimorphism is a key feature of Chinese soft-shelled turtle (Pelodiscus sinensis). The males (M) have higher econosmic value than females (F) due to wider calipash and faster growth. Exogenous hormones like estradiol and methyltestosterone can induce sexual reversal to form new phenotypes (pseudo-female, PF; pseudo-male, PM) without changing the genotype. The possibility of inducing sexual reversal is particularly important in aquaculture breeding, but the underlying biological mechanisms remain unclear. Here we applied a direct RNA sequencing method with ultralong reads using Oxford Nanopore Technologies to study the transcriptome complexity in P. sinensis. Nanopore sequencing of the four gender types (M, F, PF, and PM) showed that the distribution of read length and gene expression was more similar between same-sex phenotypes than same-sex genotypes. Compared to turtles with an M phenotype, alternative splicing was more pronounced in F turtles, especially at alternative 3′ splice sites, alternative 5′ splice sites, and alternative first exons. Furthermore, the two RNA methylation modifications m5C and m6A were differentially distributed across gender phenotypes, with the M type having more modification sites in coding sequence regions, but fewer modification sites in 3′UTR regions. Quantitative analysis of enriched m6A RNAs revealed that the N6-methylated levels of Odf2, Pacs2, and Ak1 were significantly higher in M phenotype individuals, while the N6-methylated levels of Ube2o were reduced after sexual reversal from both M and F phenotypes. Taken together, these findings reveal an important role of epigenetics during sexual reversal in Chinese soft-shelled turtles.

Funder

Central Public-Interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3