Biomedical applications of organoids derived from the digestive system

Author:

Xu Zhensheng,Lei Zhongwen,Cheng Qiuhua,Gao Yuanhui,Xiang Yang

Abstract

The global incidence of digestive system diseases is increasing, posing a significant public health challenge and driving an escalating demand for research into the mechanisms underlying their onset and progression. Traditional cell models and xenotransplantation animal models have been widely used to simulate human digestive diseases, thereby enhancing our understanding of disease occurrence, progression, and drug resistance. However, these models fail to fully replicate the complex cellular microenvironment and spatial structure, and are further limited by individual and species differences. Organoid technology, as an emerging in vitro cell culture approach, enables the precise culturing and differentiation of human stem cells to generate highly tissue-specific and functionally intact organoids. This technology not only better recapitulates cell-to-cell interactions, extracellular matrix (ECM) microenvironment, and organ-specific physiological functions but also more closely mimics the human physiological state in vitro. Moreover, it reduces reliance on animal experiments, enhances the translatability of research findings, mitigates the limitations of animal models and two-dimensional cell models, and plays a pivotal role in simulating the physiological and pathological processes of the human digestive tract. Currently, common techniques for constructing organoids include embedding culture, rotating culture, magnetic suspension culture, organ-on-a-chip, three-dimensional (3D), and four-dimensional (4D) printing technologies. Seed cells are primarily derived from digestive system epithelial cells and pluripotent stem cells. This article reviews the construction methods of digestive system organoids, evaluates their applications in studying growth and development mechanisms, disease modeling and mechanism research, drug screening, regenerative medicine, and precision medicine, and identifies existing challenges and future research directions to provide a valuable reference for biomedical research.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3