Enhancing autophagy and energy metabolism in the meniscus can delay the occurrence of PTOA in ACLT rat

Author:

Zhu Huangrong,Liu Hai,Chen Xizhong,Xu Xin,Zhang Shuqin,Xie Denghui

Abstract

Osteoarthritis (OA) is a progressive degenerative joint disease characterized by the destruction of the articular cartilage, meniscus and the like. Autophagy and cellular energy metabolism are the mechanisms by which cells maintain homeostasis. However, little is known about the effects of autophagy and cellular energy metabolism on meniscus degeneration, and the pathogenesis of posttraumatic osteoarthritis (PTOA) after the meniscal injury is rarely reported. Therefore, this study aimed to investigate the relationship between changes in autophagy and cellular energy metabolism in the meniscus following anterior cruciate ligament transection (ACLT) and PTOA induced by subsequent articular cartilage injury. In this study, we use a combination of cell experiments in vitro and animal experiments in vivo. On the one hand, cell experiment results show that inhibiting the mTORC1 signaling pathway by inhibiting the phosphorylation of S6K and AKT proteins in meniscal cells will lead to the increase of Beclin1, LC-3B, ATG12, ULK1, P62, and activate autophagy-related signaling pathways, which in turn protects the extracellular matrix component COL1 of meniscal cells from degradation by catabolic factor MMP13. In addition, it increased the generation of mitochondrial membrane potential in meniscal cells, increased the expression of anti-apoptotic factor BCL-XL, decreased the expression of pro-apoptotic factors BAD and BAX, and reduced the apoptosis of meniscal cells. More importantly, under the stimulation of inflammatory factor IL-1β, the secretion of meniscus cells can reduce the elevated levels of MMP13 and Adamts5 caused by chondrocytes affected by IL-1β. On the other hand, the results of animal experiments in vivo further proved the validity of the results of the cell experiments, and also proved that the meniscus injury did prior to the articular cartilage degeneration after ACLT. In conclusion, this study suggests that the meniscus prior to articular cartilage damage during the development of PTOA after ACLT, and that promoting autophagy and energy metabolism of meniscal cells may be a potential therapeutic target for delaying PTOA.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference51 articles.

1. Mtorc1 signaling and the metabolic control of cell growth;Ben-Sahra;Curr. Opin. Cell. Biol.,2017

2. Knee menisci.;Bryceland;Cartilage,2017

3. Publisher Correction: Accelerating functional gene discovery in osteoarthritis.;Butterfield;Nat. Commun.,2021

4. Rehabilitation of meniscal injury and surgery;Cavanaugh;J. Knee Surg.,2014

5. The role of autophagy in osteoarthritis;Duan;Front. Cell. Dev. Biol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3