Molecular, morphological and functional properties of tunnelling nanotubes between normal and cancer urothelial cells: New insights from the in vitro model mimicking the situation after surgical removal of the urothelial tumor

Author:

Resnik Nataša,Baraga Diana,Glažar Polona,Jokhadar Zemljič Špela,Derganc Jure,Sepčić Kristina,Veranič Peter,Kreft Mateja Erdani

Abstract

Tunnelling nanotubes (TNTs) are membranous connections that represent a unique type of intercellular communication in different cell types. They are associated with cell physiology and cancer pathology. The possible existence of tunnelling nanotubes communication between urothelial cancer and normal cells has not yet been elucidated. Therefore, we analyzed TNTs formed by T24 cells (human invasive cancer urothelial cells) and normal porcine urothelial (NPU) cells, which serve as surrogate models for healthy human urothelial cells. Monocultures and cocultures of NPU and T24 cells were established and analyzed using live-cell imaging, optical tweezers, fluorescence microscopy, and scanning electron microscopy. TNTs of NPU cells differed significantly from tunnelling nanotubes of T24 cells in number, length, diameter, lipid composition, and elastic properties. Membrane domains enriched in cholesterol/sphingomyelin were present in tunnelling nanotubes of T24 cells but not in NPU cells. The tunnelling nanotubes in T24 cells were also easier to bend than the tunnelling nanotubes in NPU cells. The tunnelling nanotubes of both cell types were predominantly tricytoskeletal, and contained actin filaments, intermediate filaments, and microtubules, as well as the motor proteins myosin Va, dynein, and kinesin 5B. Mitochondria were transported within tunnelling nanotubes in living cells, and were colocalized with microtubules and the microtubule-associated protein dynamin 2. In cocultures, heterocellular tunnelling nanotubes were formed between NPU cells and T24 cells and vice versa. The presence of connexin 43 at the end of urothelial tunnelling nanotubes suggests a junctional connection and the involvement of tunnelling nanotube in signal transduction. In this study, we established a novel urothelial cancer-normal coculture model and showed cells in the minority tend to form tunnelling nanotubes with cells in the majority. The condition with cancer cells in the minority is an attractive model to mimic the situation after surgical resection with remaining cancer cells and may help to understand cancer progression and recurrence. Our results shed light on the biological activity of tunnelling nanotubes and have the potential to advance the search for anticancer drugs that target tunnelling nanotubes.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3