A Stable Chemokine Gradient Controls Directional Persistence of Migrating Dendritic Cells

Author:

Quast Thomas,Zölzer Karolin,Guu Donald,Alvarez Luis,Küsters Carsten,Kiermaier Eva,Kaupp U. Benjamin,Kolanus Waldemar

Abstract

Navigation of dendritic cells (DCs) from the site of infection to lymphoid organs is guided by concentration gradients of CCR7 ligands. How cells interpret chemokine gradients and how they couple directional sensing to polarization and persistent chemotaxis has remained largely elusive. Previous experimental systems were limited in the ability to control fastde novoformation of the final gradient slope, long-lasting stability of the gradient and to expose cells to dynamic stimulation. Here, we used a combination of microfluidics and quantitativein vitrolive cell imaging to elucidate the chemotactic sensing strategy of DCs. The microfluidic approach allows us to generate soluble gradients with high spatio-temporal precision and to analyze actin dynamics, cell polarization, and persistent directional migration in both static and dynamic environments. We demonstrate that directional persistence of DC migration requires steady-state characteristics of the soluble gradient instead of temporally rising CCL19 concentration, implying that spatial sensing mechanisms control chemotaxis of DCs. Kymograph analysis of actin dynamics revealed that the presence of the CCL19 gradient is essential to stabilize leading edge protrusions in DCs and to determine directionality, since both cytoskeletal polarization and persistent chemotaxis are abrogated in the range of seconds when steady-state gradients are perturbed. In contrast toDictyosteliumamoeba, DCs are unable to decode oscillatory stimulation of soluble chemokine traveling waves into a directional response toward the wave source. These findings are consistent with the notion that DCs do not employ adaptive temporal sensing strategies that discriminate temporally increasing and decreasing chemoattractant concentrations in our setting. Taken together, in our experimental system DCs do not depend on increasing absolute chemokine concentration over time to induce persistent migration and do not integrate oscillatory stimulation. The observed capability of DCs to migrate with high directional persistence in stable gradients but not when subjected to periodic temporal cues, identifies spatial sensing as a key requirement for persistent chemotaxis of DCs.

Funder

Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference60 articles.

1. Mechanisms and Consequences of Dendritic Cell Migration;Alvarez;Immunity,2008

2. The Computational Sperm Cell;Alvarez;Trends Cell. Biol.,2014

3. Immunobiology of Dendritic Cells;Banchereau;Annu. Rev. Immunol.,2000

4. Eukaryotic Chemotaxis at a Glance;Bagorda;J. Cell Sci.,2008

5. Physics of Chemoreception;Berg;Biophysical J.,1977

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3