Replacement of dietary fish meal with Clostridium autoethanogenum meal on growth performance, intestinal amino acids transporters, protein metabolism and hepatic lipid metabolism of juvenile turbot (Scophthalmus maximus L.)

Author:

Zheng Jichang,Zhang Wencong,Dan Zhijie,Zhuang Yanwen,Liu Yongtao,Mai Kangsen,Ai Qinghui

Abstract

Clostridium autoethanogenum meal (CAM) is a novel single-cell protein, which is produced from bacteria using carbon monoxide (CO) as sole carbon source. To evaluate the efficiency of CAM as an alternative for dietary fish meal, a 56-days growth experiment was performed on juvenile turbot (Scophthalmus maximus L.) with initial average weight of 9.13 ± 0.02 g. Six iso-nitrogenous (crude protein, 51.0%) and iso-lipidic (crude lipid, 11.5%) diets were formulated with 0%, 15%, 30%, 45%, 60% and 80% dietary fish meal protein substituted by CAM protein, which were designated as CAM0 (the control group), CAM15, CAM30, CAM45, CAM60 and CAM80, respectively. Results showed that no significant differences were observed in survival rate (over 97.50%) among different dietary treatments (p > 0.05). The specific growth rate (SGR) was not significantly affected when replacement levels of dietary fish meal with CAM were less than 45% (p > 0.05). The feed intake (FI) was significantly linear reduced with increasing dietary CAM (p < 0.05), whereas no significant differences were observed in feed efficiency ratio (FER), protein efficiency ratio (PER) and protein retention (PR) among different dietary treatments (p > 0.05). With increasing dietary CAM, lipid retention (LR) and carcass lipid tended to be increased in both significantly linear and quadratic patterns (p < 0.05). The apparent digestibility coefficient (ADC) of crude protein and some essential amino acids, including threonine, valine, lysine, histidine and arginine, showed significantly linear increase with increasing dietary CAM (p < 0.05). Furthermore, with the increase of dietary CAM, the gene expression of intestinal peptide and amino acids transporters was first up-regulated and then down-regulated with significantly quadratic pattern (p < 0.05), peaking in fish fed with diets CAM30 or CAM45, which was similar to the expression of genes related protein degradation in muscle. For genes related to protein metabolism in liver and muscle, the expression of mammalian target of rapamycin (mtor) was not significantly affected by dietary CAM, while the general control nonderepressible 2 (gcn2) tended to be first up-regulated and then down-regulated with significantly quadratic pattern (p < 0.05). Apart from that, the lipid metabolism of turbot was also affected by high dietary CAM, evidenced by increased expression of hepatic genes related to lipogenesis as well as reduced expression of genes related to lipid oxidation and lipid transport. In conclusion, CAM can replace up to 45% fish meal protein in diet for juvenile turbot without significantly adverse effects on growth performance. But excessive dietary CAM would result in significant growth reduction, and excessive lipid deposition may also occur in fish fed diets with high levels of CAM.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3