The complex metabolic interactions of liver tissue and hepatic exosome in PCOS mice at young and middle age

Author:

Gao ShanHu,Long Fei,Jiang Zheng,Shi Jun,Ma DongXue,Yang Yang,Bai Jin,Han Ting-Li

Abstract

Polycystic ovary syndrome (PCOS) is a common age-related endocrinopathy that promotes the metabolic disorder of the liver. Growing evidence suggests that the pathophysiology of this disorder is closely associated with the interaction between the liver and its exosome. However, the underlying mechanism of the interactions remains unclear. In this study, we aimed to investigate the metabolite profiles of liver tissues and hepatic exosomes between normal (n = 11) and PCOS (n = 13) mice of young- and middle-age using gas chromatograph-mass spectrometry (GC-MS) based metabolomics analysis. Within the 145 identified metabolites, 7 and 48 metabolites were statistically different (p < 0.05, q < 0.05) in the liver tissue and exosomes, respectively, between PCOS and normal groups. The greater disparity in exosome indicated its potential to reflect the metabolic status of the liver. Based on hepatic exosome metabolome, the downregulations of glycolysis and TCA cycle were related to hepatic pathophysiology of PCOS independent of age. Fatty acids were the preferred substrates in young-age-PCOS liver while amino acids were the main substrates in middle-age-PCOS liver for the processes of gluconeogenesis. Overall, this study enables us to better understand the metabolic status of the PCOS liver at different ages, and exosome metabolomics shows its potential to gain the metabolic insights of parental cell or source organ.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference55 articles.

1. Passing on PCOS: New insights into its epigenetic transmission;Abbott;Cell Metab.,2021

2. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences;Anagnostis;Metabolism.,2018

3. Polycystic ovary syndrome;Azziz;Nat. Rev. Dis. Prim.,2016

4. Polycystic ovary syndrome;Azziz;Obstetrics Gynecol.,2018

5. Insulin resistance and aging: A cause or a protective response?;Barzilai;J. Gerontol. A Biol. Sci. Med. Sci.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3