The dual role of heme oxygenase in regulating apoptosis in the nervous system of Drosophila melanogaster

Author:

Abaquita Terence Al L.,Damulewicz Milena,Tylko Grzegorz,Pyza Elżbieta

Abstract

Accumulating evidence from mammalian studies suggests the dual-faced character of heme oxygenase (HO) in oxidative stress-dependent neurodegeneration. The present study aimed to investigate both neuroprotective and neurotoxic effects of heme oxygenase after the ho gene chronic overexpression or silencing in neurons of Drosophila melanogaster. Our results showed early deaths and behavioral defects after pan-neuronal ho overexpression, while survival and climbing in a strain with pan-neuronal ho silencing were similar over time with its parental controls. We also found that HO can be pro-apoptotic or anti-apoptotic under different conditions. In young (7-day-old) flies, both the cell death activator gene (hid) expression and the initiator caspase Dronc activity increased in heads of flies when ho expression was changed. In addition, various expression levels of ho produced cell-specific degeneration. Dopaminergic (DA) neurons and retina photoreceptors are particularly vulnerable to changes in ho expression. In older (30-day-old) flies, we did not detect any further increase in hid expression or enhanced degeneration, however, we still observed high activity of the initiator caspase. In addition, we used curcumin to further show the involvement of neuronal HO in the regulation of apoptosis. Under normal conditions, curcumin induced both the expression of ho and hid, which was reversed after exposure to high-temperature stress and when supplemented in flies with ho silencing. These results indicate that neuronal HO regulates apoptosis and this process depends on ho expression level, age of flies, and cell type.

Funder

Framework Programme

Narodowe Centrum Nauki

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3