Prediction of pre-eclampsia complicated by fetal growth restriction and its perinatal outcome based on an artificial neural network model

Author:

Huang Ke-Hua,Chen Feng-Yi,Liu Zhao-Zhen,Luo Jin-Ying,Xu Rong-Li,Jiang Ling-Ling,Yan Jian-Ying

Abstract

Objective: Pre-eclampsia (PE) complicated by fetal growth restriction (FGR) increases both perinatal mortality and the incidence of preterm birth and neonatal asphyxia. Because ultrasound measurements are bone markers, soft tissues, such as fetal fat and muscle, are ignored, and the selection of section surface and the influence of fetal position can lead to estimation errors. The early detection of FGR is not easy, resulting in a relative delay in intervention. It is assumed that FGR complicated with PE can be predicted by laboratory and clinical indicators. The present study adopts an artificial neural network (ANN) to assess the effect and predictive value of changes in maternal peripheral blood parameters and clinical indicators on the perinatal outcomes in patients with PE complicated by FGR.Methods: This study used a retrospective case-control approach. The correlation between maternal peripheral blood parameters and perinatal outcomes in pregnant patients with PE complicated by FGR was retrospectively analyzed, and an ANN was constructed to assess the value of the changes in maternal blood parameters in predicting the occurrence of PE complicated by FGR and adverse perinatal outcomes.Results: A total of 15 factors—maternal age, pre-pregnancy body mass index, inflammatory markers (neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio), coagulation parameters (prothrombin time and thrombin time), lipid parameters (high-density lipoprotein, low-density lipoprotein, and triglyceride counts), platelet parameters (mean platelet volume and plateletcrit), uric acid, lactate dehydrogenase, and total bile acids—were correlated with PE complicated by FGR. A total of six ANNs were constructed with the adoption of these parameters. The accuracy, sensitivity, and specificity of predicting the occurrence of the following diseases and adverse outcomes were respectively as follows: 84.3%, 97.7%, and 78% for PE complicated by FGR; 76.3%, 97.3%, and 68% for provider-initiated preterm births,; 81.9%, 97.2%, and 51% for predicting the severity of FGR; 80.3%, 92.9%, and 79% for premature rupture of membranes; 80.1%, 92.3%, and 79% for postpartum hemorrhage; and 77.6%, 92.3%, and 76% for fetal distress.Conclusion: An ANN model based on maternal peripheral blood parameters has a good predictive value for the occurrence of PE complicated by FGR and its adverse perinatal outcomes, such as the severity of FGR and preterm births in these patients.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3