How Does Our Knowledge on the Na+/H+ Exchanger NHE1 Obtained by Biochemical and Molecular Analyses Keep up With Its Recent Structure Determination?

Author:

Poet Mallorie,Doyen Denis,Van Obberghen Emmanuel,Jarretou Gisèle,Bouret Yann,Counillon Laurent

Abstract

Na+/H+ exchangers are membrane transporters conserved in all living systems and therefore are assumed to be amongst the most ancestral molecular devices that equipped the first protocells. Following the cloning and sequencing of its gene, the mammalian NHE1, that regulates pH and volume in all cells, has been thoroughly scrutinized by molecular and biochemical analyses. Those gave a series of crucial clues concerning its topology, dimeric organization, pharmacological profile, regulation, and the role of key amino acids. Recently thanks to cryogenic Electron Microscopy (Cryo-EM) the long-awaited molecular structures have been revealed. With this information in mind we will challenge the robustness of the earlier conclusions and highlight how the new information enriches our understanding of this key cellular player. At the mechanistic level, we will pinpoint how the NHE1 3D structures reveal that the previously identified amino acids and regions are organized to coordinate transported cations, and shape the allosteric transition that makes NHE1 able to sense intracellular pH and be regulated by signaling pathways.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3