Tensiomyography: from muscle assessment to talent identification tool

Author:

Čular Dražen,Babić Matej,Zubac Damir,Kezić Ana,Macan Iva,Peyré-Tartaruga Leonardo Alexandre,Ceccarini Francesco,Padulo Johnny

Abstract

Introduction: Tensiomyography (TMG) is a non-invasive and cost-effective tool that is gaining popularity in fields such as sports science, physical therapy, and medicine. In this narrative review, we examine the different applications of TMG and its strengths and limitations, including its use as a tool for sport talent identification and development.Methods: In the course of crafting this narrative review, an exhaustive literature search was carried out. Our exploration spanned several renowned scientific databases, such as PubMed, Scopus, Web of Science, and ResearchGate. The materials we sourced for our review included a broad spectrum of both experimental and non-experimental articles, all focusing on TMG. The experimental articles featured varied research designs including randomized controlled trials, quasi-experiments, as well as pre-post studies. As for the non-experimental articles, they encompassed a mix of case-control, cross-sectional, and cohort studies. Importantly, all articles included in our review were written in English and had been published in peer-reviewed journals. The assortment of studies considered provided a holistic view of the existing body of knowledge on TMG, and formed the basis of our comprehensive narrative review.Results: A total of 34 studies were included in the review, organized into three sections: 1) assessing muscle contractile properties of young athletes, 2) using TMG in the talent identification and development process and 3) Future research and perspectives. According to data presented here, the most consistent TMG parameters for determining muscle contractile properties are radial muscle belly displacement, contraction time, and delay time. Biopsy findings from the vastus lateralis (VL) confirmed TMG as a valid tool for estimating the ratio of myosin heavy chain (%MHC-I).Conclusion: TMGs ability to estimate the ratio of %MHC-I has the potential to aid in the selection of athletes with the muscle characteristics best suited for a particular sport, eliminating the need for more invasive procedures. However, more research is warranted to fully understand TMG’s potential and its reliability when used with young athletes. Importantly, the use of TMG technology in this process can positively impact health status, reducing the frequency and severity of injuries and the duration of recovery, and subsequently can reduce drop out rates among youth athletes. Future studies should look at twin youth athletes, as a model capable of discriminating between the influence of hereditary factors vs. environmental factors, in therms of muscle contractility and TMG’s potential for instance.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3